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On the basis of the pseudo-excitation method (PEM), a random vibration methodology is formulated for
the seismic analysis of multi-supported structures subjected to spatially varying ground motions. The
ground motion spatial variability consists of the wave passage, incoherence and site-response effects.
Advantages of this method are that less computation effort is required and that the cross-correlations
both between normal modes and between excitations are automatically included. Random seismic
responses of a realistic long-span bridge due to the wave passage, incoherence and site-response effects
are extensively investigated. It is shown that all these effects have significant influence on the seismic
response of the structure.

1. Introduction

Seismic analysis of long-span structures subjected to spatially
varying ground motions has been a fundamental problem of
interest for over two decades. Interest in this problem stems from
earthquake engineering for the complex nature of the earth’s
crust, which causes earthquake motions to vary along the length
of structures, coupled with the increasing application of long-span
structures. The variations in the ground motion arise mainly from
three sources: the “wave passage effect” due to the difference in
the arrival times of waves at support points; the “incoherence
effect” due to reflections and refractions of seismic waves through
the soil during their propagation; and the “site-response effect”
due to the differences in local soil conditions at the support points
[1,2]. Long-span structures are generally important facilities, e.g.
long-span bridges, gymnasiums, dams, or nuclear power plants.
Therefore, their aseismatic capabilities are highly relevant to
public safety and so in the last 20 years much research has gone
into establishing practical seismic analysis and design methods
for them [3-32].

Lee and Penzien [3] developed a stochastic method for seismic
analysis of structures and piping systems subjected to multiple
support excitations in both the time and frequency domains.
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E-mail address: zhangyh@dlut.edu.cn (Y.H. Zhang).

Lin et al. [4] simplified a surface-mounted pipeline as an infinitely
long Bernoulli-Euler beam attached to evenly spaced ground
supports, and solved its random seismic responses. Perotti [5]
investigated the non-stationary responses of multiple-supported
structures. Loh and Lee [6] studied the aseismic displacement
of multi-supported bridge to multiple seismic excitations.
Yamamura and Tanaka [7] developed response spectrum and
time-history methods to evaluate the response of MDF systems
subjected to multiple-support seismic excitations, with the
support motions grouped into independent subgroups with
perfect correlation between the members of each subgroup.
Deodatis et al. [8] discussed the effect of spatial variability,
including variable soil conditions, on the response of bridges
using fragility analyses. Zerva [9] analyzed two- and three-span
beams of various lengths (short, moderate and long) subjected to
input motions that exhibit loss of coherence only, with various
degrees of correlation, and compared the response to the one
induced by fully correlated motions. The results indicates that
fully correlated motions may produce higher or lower response
than partially correlated motions, depending on the dynamic
characteristics of the structure. Zerva further investigated the
effects of both loss of coherence and phase difference between the
motions at the supports [10] and isolated the contribution of the
different coherency models to the quasi-static and dynamic
response of linear, generic models of lifelines [9-12]. It was
shown [12] that the root-mean-square (rms) quasi-static response
of lifelines is proportional to the rms differential displacement
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between the supports, and the rms contribution to the excitation
of individual modes is proportional to the differential response
spectrum. Berrah and Kausel [13] proposed a modified spectrum
method for the design of extended structures which considers the
spatial variability effect arising from the incoherence. Nazmy and
Abdel-Ghaffar [14] studied the seismic responses of cable-stayed
bridges considering the seismic-wave traveling effect and
accounted for time delay and phase difference by using the
time-history method. Der Kiureghian et al. [15] developed a
response spectrum method considering the effects of wave
passage, incoherence and site-response. Heredia-Zavoni and
Vanmarcke [16] developed a random vibration method for the
seismic-response analysis of linear multi-support structural
systems, which reduces the response evaluation to that of a
series of linear one-degree systems in a way that fully accounts for
the multiple-support input and the space-time correlation
structure of the ground motion. Harichandran et al. [17-20]
proposed a random vibration algorithm to reduce the cost of
large-scale stationary and transient random vibration analysis of
structures excited by multiple partially correlated nodal and/or
base excitations, presented stationary and transient response
analyses of the Golden Gate suspension bridge, and the New River
Gorge and Cold Spring Canyon deck arch bridges. Recently, Tubino
et al. [21] provided mathematical and physical interpretations of
the effects of partial correlation of the seismic ground motion on
the response of multi-supported multi-DOF systems by introdu-
cing suitable equivalent spectra and by representing the seismic
ground motion by the proper orthogonal decomposition. Allam
and Datta [22,23] used frequency domain spectral method and
response spectrum method to estimate the seismic responses of
cable-stayed bridges subjected to patially correlated stationary
random ground motion. Dumanoglu and Soyluk [25-27] investi-
gated the relative importance of ground motion variability effects
on the dynamic behavior of plane models of cable-stayed and
suspension bridges. Lupoi et al. [28] investigated the relevance of
the phenomenon of spatial variability of seismic ground motion
on the performance of a number of bridges having quite different
distributions of stiffness properties. All these studies have made
significant contributions to the seismic analysis of long-span
structures.

Lin et al. [29-31] proposed an efficient pseudo-excitation
method (PEM) to compute the stationary and non-stationary
seismic responses of multi-support structures, for which the
wave passage and incoherence effects are included. Zhang et al.
[32] used PEM to investigate seimic random responses
of a suspension bridge due to the wave passage effect. In the
present paper, PEM is extended to investigate the combined
influence of the spatial effects of the site-response effect as well
as the wave passage and incoherence effects of ground motion on
the seismic responses of long-span structures. In order to focus
attention on the spatial variation effects, transient dynamic
phenomena that may prejudice or compromise a simple inter-
pretation of the most relevant physical and analytical aspects are
ignored and the ground motion is modeled as a stationary multi-
variate, one-dimensional random process. Firstly, the PSD matrix
of the ground motions are established based on the coherency
model proposed by Der Kiureghian [2]. It accounts for the wave
passage, incoherence and site-response effects. It is then decom-
posed into the product of a matrix and its transpose, and a series
of harmonic loads, i.e. so-called pseudo-excitations, are con-
structed. The PSDs of random seismic responses are then obtained
by solving a series of harmonic dynamic equations by using the
mode superposition method. The cross-correlations both between
normal modes and between excitations are automatically in-
cluded in the computation. A realistic long-span suspension
bridge is analyzed to enable the influence of the wave passage

effect, the incoherence effect and the site-response effect to be
further discussed.

2. Spatially varying ground motion model

The seismic ground motion is assumed to be a normal
stationary random process. If a structure has N supports, their
ground accelerations il; (i = 1,2, ..., N) along the earthquake wave
traveling direction can be written as the N-dimensional vector:

itp(t) = {i(t) () un(t) )T (1)

where superscript T denotes transpose. The spatial variability of
the ground motion is characterized by the cross-power spectral
density function in the frequency domain. For ground accelera-
tions il (t) and ii(t) at the kth and Ith supports, this function can
be written as follows:

Si(@) = V(@) Si(@)Sy(w) (2)

where  is the circular frequency; Sge(®), Sy(w) and Sy (w) are the
auto-power spectral density functions of the accelerations at the
kth and Ith supports and their cross-power spectral density
function, respectively; and yy(w) is the coherency function of the
accelerations at the kth and Ith supports, which can be expressed
as follows [2]:

Pa(@) = Y@ (@) (@) (3)
in which y;f}(w) characterizes the real-valued incoherence effect,
yﬁ’l")(w) indicates the complex-valued wave passage effect and
7% (w) defines the complex-valued site-response effect.

Several models have been proposed for the incoherence effect
due to reflections and refractions of waves through the soil during
their propagation [2,33-35]. For example, Der Kiureghian [2]
proposed the mathematic model:

78(w) = cos [B(di, )] exp[—La?(dy, w)] (4)

in which dy, is the horizontal distance between the two supports
and the angles o and f are functions of dj; and w.

The wave passage effect resulting from the difference in the
arrival times of waves at support points is defined as follows [2]:

. L
Yid = expli(d)y ()] = exp [— “j’dk’} (5)
app

here dk, is the projection of dy, in the earthquake propagation
direction and, v, is the apparent velocity of the seismic waves,
which is usually taken as a constant in practical computations.
Suppose that the wave front reaches the origin of the coordinate
system, i.e. the reference point, at T= 0, and then reaches the
N supports of the structure at times Ty, Ty, ..., Ty, respectively.
Without losing generality, we can assume T;>T; and hence

L

Vdi ST -T, (6)
app

and

7 = expliex(Ty — T))] (7)

The site-response effect due to the differences in the local soil
conditions is obtained as follows [2]:

75 (@) = explif}y) ()] (8)
and the phase angle is given by

08 (@) = 02 (@) — 0 () (9)
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09 () = tan™! —— K _ gap-! il (10) I = (15)
Re(Hy()) oi(w} — 0?) + 4ot w? S
wy and &, are the resonant frequency and damping ratio of the soil ’/% “/;\'/)2 e V%v
layer and Im(#) and Re(#) denote the real and imaginary parts of #,
respectively. In general S;,i,(w) in Eq. (12) is a positive definite Hermitian
Therefore, the PSD matrix of the ground acceleration vector matrix, while I' is a positive definite real symmetric matrix, which
itp(t) for the N supports has the form: can be decomposed into the product of a real lower triangle
Siyii, () =
,y(]i: Sy ”/(Pz el =0 i ~T2) /SIS . V(1i1)v el =00 gioxT1~Tr) | /S S
V(zl)l Q0509 Ty T1) /55 y(zlé Sy . V(Zi;vei(eg)_gﬁ»eiw(rz—m) S22SNN
(11)
y% ei(eﬁ,e;s;)ei(u(r,rn) \/m 7;\11)2 ei(gﬁ)—g(zs))eiw(TN*TZ) SaNS22 - 'V;?NSNN
in which S (k=1, 2, ..., N) stands for Si.(w). matrix Q and its transpose, i.e.:
Obviously, this can be decomposed as follows:
r=o0' (16)
Siyi, () = B*DIDB (12)
. . . Thus, Eq. (12) can be written as follows:
in which “*” denotes complex conjugate, and a.(12) wi W
sk pT
B = diag [efi(wnw‘f)) e-i@T2+05) e—i(wTN+9ﬁ')} (13) Sisyin, () = P*P (17)
in which
D:dlag[\/Sn \/522 \/SNN] (14) P:BDQ (18)

455m 1377m 300m
23m| 76.5m  355.5m 72m72m72m72m
k "l

Ma Wan Tower Tsing Yi Tower *

Ma Wan Island Tsing Yi Island

Fig. 2. Finite element model of the Tsing-Ma bridge.
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3. Pseudo-excitation method with spatially varying ground
motions

The coupled equations of motion of a linear, multi-degree-of-
freedom, structural system with N supports subjected to spatially
varying ground motions can be written as follows:

C Cc

e e} et o)
Lo sin)-{e)

in which ug is the m-dimensional vector of enforced support
displacement components, with all three translations and no
rotational components considered for each support so that

(19)

Table 1
Selected angular natural frequencies of the Tsing-Ma bridge (rad/s)

Mode 1 2 3 4 5 6 7
Frequency 0.426  0.732 0.863 0.988 1190 1322 1.448
Mode 8 9 10 11 12 13 14
Frequency  1.460 1.507 1.538 1.704 1.766 1.828 1.848
Mode 15 16 20 30 40 50 60
Frequency  1.951 2.039 2.312 2.988 3.763 4.507 5.348
Mode 70 80 90 100 110 120 130
Frequency 5987  6.794 7.727 8.251 9.142 10.032  10.659
Mode 140 150 160 170 180 190 200
Frequency 11174 12.404 12.967 13.483 14353 14962 15.456
Table 2

Power spectral density parameters for firm, medium and soft soil conditions

Soil type g (rad/s) & ws (rad/s) & So (m?/s?)
Firm 15.0 0.6 1.5 0.6 0.00177
Medium 10.0 0.4 1.0 0.6 0.00263
Soft 5.0 0.2 0.5 0.6 0.00369
a
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m=3N; u is an n-dimensional vector containing all nodal
displacements except those at the supports; Fg represents the
enforced forces at all supports; the n x n matrices M, C and K are
respectively the mass, damping and stiffness matrices associated
with u; the m x m matrices Mg, Cg and Kg are the mass, damping
and stiffness matrices associated with ug and; Mc, Cc and K¢ are
the n x m coupling matrices shown. Note that when the lumped
mass matrix approximation is adopted, Mc is null. In order to
solve Eq. (19), u is usually decomposed into the two parts:

u=u +ul

(20)

where #* and u¢ are, respectively, the quasi-static and dynamic
displacement vectors, which satisfy the equations [15,36]:

' = —K 'Kcug = Rug (21)

Mi + Ci® + Kud = —(MR + M()iig (22)

Assume that xyz is a right-hand coordinate system for which
both the x- and y-axes lie in the horizontal plane. The anti-
clockwise angle between the x-axis and the horizontal traveling
direction of earthquake wave is . Thus, the displacement
components along the coordinate axes, ug, can be expressed in
terms of the components parallel or normal to the wave traveling
direction, uy, as:

uc = Eqnup (23)
in which E,,y is an m x N block-diagonal matrix.
Enn =diag[E1 E; --- En] (24)

Because only the three translations of each support are
considered, each sub-matrix E; becomes [cos f sinfi O],
[—-sinf cosf O"and [0 O 17" for the P, SH and SV waves,
respectively [31].

Using Eq. (23), Egs. (21) and (22) can be rewritten as follows:

u = —K'Kcug = REpnuy (25)
Miid + Ci + Ku® = —(MR + M¢)E ity (26)
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Fig. 3. Shear forces and bending moments under uniform support motions.
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Let any response quantity of interest be denoted by z(t), i.e. z(t),
could be a nodal displacement vector, an internal force vector, a
stress vector or a strain vector. Then for a linear system z(t) can be
expressed as follows:

2(t) = TTu(t) + Thug(t) (27)

where T" and T¢ are transfer matrices, which usually depend on
the geometry and stiffness properties of the structural system. The
dynamic displacement vector can then be written in the
convolution integral form as follows:

() = — / - A(T)(MR + M¢)Epyiip(t — 1) dT (28)

in which h(t) is the impulse response function matrix. Hence,
using Eqgs. (23), (25) and (28), Eq. (27) becomes:

()= —T" / h(T)Aity(t — T)dT + Guy(t) (29)
where
A=(MR+McEny, G=T'REun+ T&Emn. (30)

Then the power spectrum density matrix of z(t) can be obtained
as follows:

Sz(w) = TTH*(@) A4S, (0)ATH ()T + % GSiyi, (0)G"

1

+—3 TTH*(0) A4S, (0)G"

1
+ EGSﬁbﬁb(a))ATHT(w)T (31)

in which H(w) is the frequency response function matrix of the
structure and is given by

H(w) = [ - h(t)e @7 dt (32)

The four terms summed to give the right-hand equality of
Eq. (31) can be grouped into three parts. These are: the first term
corresponds to the contribution of the dynamic component, the
second term corresponds the contribution of the quasi-static
component and, the sum of the third and the fourth terms
represents the contribution of their cross-correlation.

Substituting Eq. (17) into Eq. (31), the power spectrum density
matrix of z(t) is expressed by

T G\* pr( G\’
S, (w) = <T H(w)A +E> P*P (T H(w)A +E)
= pEpT (33)

where
T G
V=T HA+_5)P (34)

On the basis of the PEM, the pseudo-excitation matrix, which
can be regarded as N vectors, is constructed as follows:
I:Jb = P exp(iwt) (35)

Then solving the deterministic equations:

= d = d N z
MU +cU + KU =40, (36)
gives the pseudo-dynamic displacement matrix i as follows:

U® = —H(w)AP exp(iot) (37)

Then, the corresponding pseudo-quasi-static displacement matrix
is easily obtained by solving the linear algebraic equations:

S

- 1 =
KU ZEKCEmNUb (38)

which, by using Eqgs. (35) and (21), can be written in the form:

&S

U = —%RE,“NP exp(iwt) (39)

and the pseudo-displacement components of support motion
along the coordinate axes are given by

N 1 .
Ug = —EEmNP exp(imwt) (40)

Therefore, the pseudo-response matrix Z(t) can be expressed as
follows:

Zt)=— (TTH(w)A + %)P exp(iwt) = —V exp(iwt) (41)

Comparing Eq. (41) with Egs. (33) and (34), it is not difficult to
obtain the relationship:

Su(w) = Z* 7' (t) (42)

The required spectral moments of the responses can then be
obtained, and so the extreme values can be estimated [37].
The dynamic analysis of complicated structures is usually
solved by the mode superposition method, in which i in Eq. (36)
is expressed in terms of the mode matrix &:

U= oy (43)

Fig. 4. Some members of the Ma Wan Tower.
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where @ consists of the first ¢ undamped modes and satisfies:

K® = MDQ? (44)

Here 92 is a diagonal matrix consisting of the squares of the first q
free vibration frequencies. Using the mass normalized mode
matrix, Eq. (36) can be transformed into:

Y+Cev+ Qv — o4l (45)
in which
C=d'co (46)

If C is an orthogonal damping matrix, C will be a diagonal
matrix. Then from Eq. (44), it is easily verified that
—Q2P'KK 'Kc = -Q7?P K,

P"MR = (47)

where 272 is the inverse of 22, which is obtained by replacing the
diagonal terms of €22 by their reciprocals, and Eq. (45) can be
written as follows:

Y+ CV+ Q% = ( Q20 Kc — ®"MOE U, (48)

The above has summarized the key details of PEM associated
with multi-support seismic analysis, i.e. the method used to
obtain the results which follow.

4. Numerical example

As well as demonstrating applications of the method pre-
sented, an example in this section examines the effects of wave
passage, incoherence and site-response. The example is an

a
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existing bridge structure and shows the powerful potential of
the proposed method used, as well as leading to conclusions.

Consider the Tsing-Ma long-span suspension bridge shown in
Fig. 1, which links the commercial centers of Hong Kong Island and
Kowloon to Hong Kong’s airport on Lantau Island. Stretching from
Tsing Yi island to Ma Wan island, the Tsing-Ma bridge has a main
span of 1377 m between its two towers. The height of the towers
is 206 m, the two cables are 36 m apart and the side spans are 300
and 355.5m, measured to the anchorages. The bridge deck is a
hybrid steel structure continuous between the two main
anchorages and is supported by suspenders in the main span
and one side span, and by three piers on the other side span
(Fig. 1). The above facts cause some asymmetry about the
midspan of the bridge.

A three-dimensional dynamic finite element model was
established for the above bridge after the completion of deck-
welding connections [38]. Briefly, three-dimensional Timoshenko
beam elements with rigid arms were used to model the two
bridge towers. The cables and suspenders were modeled by cable
elements and the geometric non-linearity due to the deformation
of the cables was allowed for when determining the initial shape
of the bridge. Since the sectional properties of the bridge deck
rather than structural details affect the natural frequencies and
mode shapes of the bridge, the deck in the global dynamic
analysis of long-span bridges in commonly represented by a single
equivalent beam, or two and three equivalent beams, or
equivalent plates, to avoid tremendous computational effort. In
consideration of the structural system of the Tsing-Ma Bridge
deck, a single equivalent beam was used to model the bridge deck
in the global dynamic analysis. Because the size and structural
system of the deck vary along the longitudinal axis of the deck, six
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Fig. 5. Ratios of responses relative to the benchmark due to the wave passage effect.
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typical cross sections were identified for the whole bridge deck.
Each typical section of 18 m was represented by a three-
dimensional finite element sectional model generated using the
computer program SAP 90. The connections between bridge
components and the supports of the bridge were properly
modeled. Fig. 2 indicates this finite element model of the
Tsing-Ma bridge, which had: 769 nodes, including 29 support
ones; 1010 elements and; 2254 degrees of freedom. The proposed
method has been implemented on the FEM program DDJ-W. The
program can handle three-dimensional Timoshenko beam ele-
ments, two-node cable elements, master-slave variables and
relative coordinates. The accuracy of the program has been
validated through comparison with the results given by some
commercial software package in the case of the free-standing
towers and equivalent bridge beam, and given by Irvine’s theory in
the case of the main span and side span cables [38]. The
distribution of its first 200 natural frequencies is indicated in Table
1. It can be seen that the natural frequencies of the bridge are very
closely spaced. Detailed information on the structural properties,
on the finite element modeling, on the natural frequencies and, on
the mode shapes of the bridge are given in Ref. [38].

The first 180 modes were used in the mode superposition
analysis, because using more modes was shown to make
practically no difference. The damping ratios of all participant
modes were assumed to be 0.02. The seismic spatial effects for
horizontal SH waves and vertical SV waves traveling in the
longitudinal direction of the bridge were investigated. The
effective frequency region was taken as w € [0, 15]rad/s and the
frequency step-size as Aw = 0.01 rad/s. Using a smaller frequency

step-size and a wider frequency region was found to make
practically no difference to the results.

In the computation that follows, sites with different soil
conditions have been modeled using the modified Kanai-Tajimi
spectral density function for ground accelerations, Sy (),
k=1,2,...,N,is given by [36]

1+ 4§§k(w/wgk)2
(1 — (/g + 4@/ wg)?
(@/wpg)?
X ) 2 2
[1 — (w/wp) )" + 4p(w/wp)

in which, Sg, is the amplitude of the white-noise bedrock
acceleration, wg and g are the resonant frequency and damping
ratio of the first filter, and wg and &g are those of the second filter.
In this study, firm, medium and soft soil types are considered and
the filter parameters used for these soil types are those proposed
by Der Kiureghian and Neuenhofer [15] (Table 2). The values of Sg
were obtained for each soil category by equating the variance of
the east-west component of the Erzincan earthquake acceleration
record in 1992 [25] and are also listed in Table 2.

Two models are adopted to account for the incoherence effect:

Sik(w) =

Sok (49)

(1) The L-Y model, i.e. the coherency relationship between two
arbitrary ground joints was expressed as follows [35]:

(de’
27Vapp

79(w) = exp [—oc

(50)

where the constant o used was 0.125.
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Fig. 6. Ratios of responses relative to the benchmark due to the incoherence effect.
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(2) The H-V model, i.e. the coherency relationship was expressed
as follows [34]:

i 2
78(w) = A exp {f oc(i‘(j:nl)) 1-A+ ocA)}
2dy
+(1-A4A) exp{—m(l—A+aA)} (51)
in which
(@) = K[1 + (/o)1 (52)

and the values used for the parameters in Eqgs. (51) and (52)
were: A=0.736, o =0.147, K= 5210, wo = 6.85rad/s and,
b =2.78.

As a benchmark for the comparison, analysis is first carried out
using uniform support motions all described by the set of surface
motions of the “firm” site. This is referred to the uniform support
motion case. The results are illustrated in Fig. 3. Fig. 3(a) presents
the transverse shear forces and bending moments in z-direction of
the deck under SH waves; Fig. 3(b) shows the transverse shear
forces and bending moments in x-direction of some members of
the Ma Wan Tower (Fig. 4) under SH waves; Fig. 3(c) gives the
vertical shear forces and bending moments in y-direction of the
deck under SV waves; and Fig. 3(d) presents the shear forces in
x-direction and bending moments in y-direction of some
members of the Ma Wan Tower under SV waves.

Fig. 5 presents the ratios of responses relative to the bench-
mark for a case where spatial variability due to the wave passage
effect alone is considered. The wave velocities were as shown,
namely 500, 1000, 2000, 4000 m/s and infinity. It can be seen from
these figures that many of the ratios are greater than 1. Obviously,
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the wave passage effect has significant influence on the seismic
responses. It is also observed that the influence of wave
passage effect on the response of the bridge is not necessarily
monotonic.

Fig. 6 shows the ratios of responses relative to the benchmark
for a case where spatial variability due to the incoherence effect
alone is considered. Four cases are shown: (1) L-Y model,
Vapp = 500m/s; (2) L-Y model, v,pp = 2000m/s; (3) L-Y model,
Vapp = 0 and (4) H-V model. It can be observed that the
incoherence has significant influence on the seismic responses
and that there are notable differences in the results given by the
different incoherence models.

To show the influence of the site-response effect, six cases
were considered for the soil conditions at Ma Wan and Tsing Yi
islands. They were: firm-firm, medium-medium, soft-soft,
firm-medium, firm-soft and medium-soft. Fig. 7 presents the
results of this analysis. It can be seen that the seismic responses
under different soil conditions, i.e. including site-response effect,
have significant differences from those under uniform soil
conditions. Moreover, these responses are almost always between
those of the firmer uniform soil condition and the softer uniform
soil condition.

Fig. 8 compares the results for the benchmark case with four
cases: (1) the wave passage effect alone, (2) the effects of wave
passage and incoherence (L-Y model), (3) the effects of
wave passage and incoherence (H-V model) and, (4) the effects
of wave passage, incoherence and site-response are all present. In
all cases, v,pp = 1000 m/s. The support conditions were the same
as those of the benchmark case for Cases (1)—(3). In Case (4), the
soil condition at Ma Wan and Tsing Yi islands was firm-medium.
It can be seen from these figures that variable site conditions of
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Fig. 7. Responses due to the site-response effect.
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Fig. 8. Ratios of responses relative to the benchmark due to the wave passage, incoherent and site-response effects.

the soil condition at Ma Wan Tower changing from firm to
medium, had larger effects on the shear forces and bending
moments of the bridge than others.

5. Conclusions

This paper presents a random vibration algorithm for the
seismic-response analysis which accurately accounts for the
spatial variability effects of wave passage, incoherence and
site-response.

Complex structures usually have very closely spaced natural
frequencies and it is difficult to judge which of these will affect
the structural responses severely. It is difficult to make general
conclusions for this complex problem. The results presented for a
suspension bridge show that the response depends heavily on the
three spatial variability effects. Therefore, for realistic seismic
analysis of long-span structures the variability of the ground
motions should be incorporated.
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