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This survey of copulas reviews some aspects of copulas, their properties,
tries to stress their relevance for statistics and their connection with
Markov processes and conditionalzompctations.

1. What is a Copula?

Copulz were introduced in 1959 by Sklar®®. Nowadays the literature on
copulas is very large. The reader is referred in the first place to the author-
itative books and surveys by Schweizer, Sklar and Nelsen?26:21:20:27.15 " Aso
the books by Joe!® and by Hutchinson and Lai'? contain much useful infor-
mation; so do also a wealth of papers, some of which will be cited when the
need arises. The present paper aims at introducing some of the properties
and of the uses of copulas, even of those not (yet) of immediate relevance
for the field of reliability; of course, it cannot pretend to have either the
same breadth or the same depth of the works just cited.

A copulais a function C : [0,1]x [0, 1] — [0, 1] that satisfies the following
properties:

— for all t in [0, 1], C(¢,0) = C(0,t) = 0;
- for all £ in [0,1], C(¢,1) = C(1,¢) = t;
- ifz,2',y,y are in [0,1] with z < 2’ and y < ¢/, then
C(z',y') — C(z,y) — C(a',y) + Cla,y) > 0. (1)

As a consequence of these properties it follows that
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(a) C satisfies the Lipschitz condition
|C(3’v y) - C(:C!a y’)| < |.’L‘ - ‘Tr[ + |y T y,':

(b) it is non—decreasing in each variable,
(¢) it is absolutely continuous.

In other words, a copula is (the restriction of) an absolutely continuous bi-
variate distribution function that concentrates all the probability mass on
the unit square [0, 1] x [0, 1] and which has uniform marginals. We consider
random variables that may take the values - co and/or +o0 with probabil-
ity different from zero. As a consequence, their distribution fl%nctions are
defined on R := [~00, +00], in the univariate case, and on R =R xR,
in the bivariate case; also they may have a jump at points with at least an
infinite coordinate.
The importance of the concept of copula stems from the following

Theorem 1: (Sklar) Let X and Y be two random variables on the proba-
bility space (9, F, P) having H as their joint distribution function and let
F and G be the marginals of H,

F(z) = H(z, +00), G(y) = H(+o00,y).
Then, there exists (at least) a copula C such that
H(z,y) = C(F(2),G(y))- (2)

If both F and G are continuous, then the copula C is uniquely determined;
otherwise, C' is uniquely determined on Ran F'xRan G, where Ran F is
the image of R under F, Ran F := F (R). Conversely, if C is a copula and
F and G are univariate distribution functions, then the function H defined
by (2) is a joint distribution function with marginals given by F and G.

If either F' or G, or both, is not continuous, then more than one copula
may satisfy (2); all of these coincide on Ran FxRan G. Notice that the
discrete case is important for the applications because empirical versions
of copulas are obtained by substituting empirical distributions for F and
G. However, by a method of bilinear interpolation, it is always possible to
choose a single copula that satisfies (2), see Section 2.3.5 in the book by
Nelsen'®. This method is essential for some of the developments presented
in the sequel. More specifically, let. C’ be any of the copulas that satisfy
(2) and which are uniquely determined on Ran F'xRan G; extend it by
continuity to the closure of the set Ran FxRan G. Now let (s,t) be any
point in {0,1] % [0, 1] and let s; and s2 be the greatest and the least element,
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respectively, in Ran F—the closure of Ran F—such that s; < s < s3.
Similarly, let t; and to be the greatest and the least element, respectively,
in Ran G such that t; <t < ts. If s belongs to Ran F', then 81 = 5 = .s9;
and, if ¢ belongs to Ran G, then t; =t = t5. Then define

g~ y if s < 89,
A= 82— 51
1, if s = s9;
— )
¢ 2 3 if t; < to,
A=< ta—1)
1, iftl = {q.

It is a long, but not hard, task to check that the function defined on [0, 1] x
[0,1] by

C(s,t) = (1 = A]}(l — )\2) C!(Sl,t]) + (1 — ,\1))\2 C’(Sl,ig)
+ A1 (1 == AQ) Cf(-‘s'mtl) + A1 A2 Cr(si’rt?)
is a copula and that it satisfies (2).

Among the copulas, three are particularly important; they are denoted
by W, Il and M and are defined by

Wi(s,t) := max{0,s +1 — 1},
II(s,t) := st,
M(s,t) := min{s, t}.

Two continuous random variables X and Y are independent if, and only
if, their copula Cyy is equal to II; two continuous random variables X and
Y have W as their copula if, and only if, one of them is a strictly decreasing
function of the other one, while they have M as their copula if, and only
if, one of them is a strictly increasing function of the other one.

Let X and Y be two continuous random variables and let C'xy be their
copula. If ¢ and ¢ are strictly increasing functions defined on Ran X and

Ran Y respectively, then the copula C o x yoy of the random variables po X
and ¢ o Y satisfies

Cooxpoy = Cxy.

Thus the copula Cxy is invariant under strictly increasing transformations
of X and Y. This property has an important consequence: it makes copu-
las well suited to express the “scale invariant” properties and measures of
association for random variables. This aspect will be exploited in section 3.
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Moreover, if C is any copula, the following inequalities (the Fréchet
bounds!?) hold for all s and ¢ in [0, 1],

W(s,t) < C(s,t) < M(s,t).

The properties of the partial derivatives of a copula C are important for
what follows. For every t € [0, 1], the function s — C(s,t) is non-decreasing
and, hence, differentiable for almost every t; where the derivative exists,
one has

0< DiC(s,t) = ?%:’—t) 24 a.e..

Similarly, for every s € [0, 1], the function t — C(s,t) is non-decreasing and
differentiable almost everywhere in I; where the derivative exists, one has

dC(s,t)

0 < DoCl(s,t) = =5

e B a.e..

2. Special Classes of Copulas

In the literature, one can find several methods of constructing copulas; see,
for this, Chapter 3 in the book by Nelsen'®. The most widely studied class
of copulas is probably that of Archimedean copulas. The reason for which
these copule have been so extensively studied is twofold: on one hand,
they are symmetric and, therefore, they lend themselves admirably to the
study of pairs of exchangeable random variables, and, on the other hand,
many of the families presented in the literature depend on one or more
parameters, which allows the usual statistical procedures of best estimation
and goodness of fit in concrete case studies; see, for instance De Michele
and Salvadori”.

In order to define Archimedean copulas, let ¢ : [0,1] — [0,400] be
continuous, convex, strictly decreasing and such that (1) = 0. The pseudo-
inverse of ¢ is the function @[~ from [0, +-00] into [0, 1] defined by

TP L (R t € [0,(0)],
s {0. t € [p(0), +oc].

For every t € [0, 1], one has

o= (p(t)) = ¢,

while, for every z € [0, +00], one has

@ ((p[‘”(z)) = min{z,p(0)}.
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Then, an Archimedean copula C is defined via
Cls,t) == o1~ (p(s) + (1)) . (3)

The function  is called the additive generator of C.

In the work of Averous and Dortet-Bernadet? a nice relationship is
established between the dependence properties of the copula (3) and the
aging properties of the distribution function

Folt) =1 - =1 2).
In the class of Archimedean copulas the most widely studied is the

family of Frank’s copulas?; if f is a real parameter different. from zero, then
the Frank’s family of copulas is defined through

Co(s,t) := _% In (1 + (e—‘-’s _ 1) (8*9; - 1)) -

e~9 -1

The additive generator of Cy is

-0t
e -1
t) ;= —-In —————.
(PB{ ) n e 0 1
It is important to note the following limiting values
lim Cy =W, lim Cy =11, lim Cy = M.
f——oc g8—0 f— 400

3. Statistical Properties

Copula are widely used in non-parametric statistics, especially in the study
of dependence of random variables. For the notion of dependence see, for
instance, the books by Szekli?® and by Joe!®. Many interesting known mea-
sures of association between random variables may be expressed in terms of
copulas. If X and Y are continuous random variables and C' is their copula,
then Kendall's tau is
Txy =4 / C(s,t)dC(s,t) — 1;
[0,1] % [0,1]

Spearman’s rho is

pxy =12 / stdC(s,t) —3 =12 / C(s,t)dsdt — 3;
[0,1]x[0,1] [0,1]x[0,1]

and Gini’s measure of association is

1
7@24/0 C(t,l—~t)dt——4/1(1—~C(t,t)) dt.
0
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A measure of dependence was introduced by Schweizer and Wolff*? in terms

of the copula of the two random variables involved; its L'-version is given
by

(X, Y):=12 / |C(s,t) — st| dsdt.
[0,1]x[0,1]
The LP-version, with p € |1, +o00], is given by
1/p

o X, Y) =Xk, f [C(s,t) — st|” dsdt :
[0,1]x[0,1]
here k, is a suitable normalization factor, necessary for the inequality
0<o,(X,Y) <1

For instance, in the case p = 2, one has ko = 90. There is also a L®~version
given by

Tigi== 4 sup {lC(.S, t) = St| = [07 11} :

All these measures of dependence meet a slight modification of Rényi’s
list of requirements for such a measure'®; among other properties, Rényi
requested that a measure of dependence R(X,Y’) of two random variables
X and Y defined on a common probability space should satisfy R(X,Y) =1
if either X = foX or Y = go X for some Borel-measurable functions f
and g, and R(foX,goY) = R(X,Y) when f and g are one-to—one Borel-
measurable functions. Instead the measures o, defined above are such that
o0p(X,Y)=1and op(fo X,g0Y) = 0,(X,Y), if, and only if, f and g are
strictly monotone.

Beside satisfying Rényi’s requirements in the modified form just men-
tioned, the measures of dependence o, are such that if {(X,, Y,)} converges
weakly to (X,Y), then lim,_ o0 0p(Xn,Yn) = 0(X,Y).

One can define empirical copulas. If {(X;,Y;) : j = 1,2,...,n} is a
sample of size n from a bivariate distribution and if the order statistics
from the same sample are denoted by X ;) and by Y{;) then the empirical
copula is defined via

(j k) ___ number of pairs (X,Y) with X < X(;) and ¥ < ¥,
"\n'n) '

n

Empirical copula were first used by Deheuvels® in order to construct tests
of independence.
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Recently copulz have been used in Finance, see, for instance!®®.

4. Copulz and Markov Processes

Darsow, Nguyen and Olsen® established a connection between copulas and
Markov processes through an operation on the set C of all copulas, which
will now be described. Let A and B be copula; if x and y are in [0,1] an
operation on C is defined via

1
(A% B)(z,y) := /DQA(I-, t) D1 B(t,y) dt. (4)
0

Then A = B is a copula, the operation * is associative, and, if {A,}
converges to A, then one has both

A, *B —— Ax B

n—-+4o00

and

Bx A, —— Bx A;

n—+4o0

however, the operation * is not jointly continuous. The operation * has
both a zero and an identity: they are, respectively, the copulse II and M;
in fact, for every copula C, one has

I«C=Cx*II=1II,
MxC=CxM=C.

It follows from these relationships, and this remark will be important in
the sequel, that both IT and M are idempotent, in the sense that

I+ =TI,
M+ M= M.

The importance of the operation * stems from the following

Theorem 2: (Darsow, Nguyen, Olsen) Let {X, : t € T} be a real-valued
stochastic process and let Cs; be the copula of the random variables X,
and X,. If, for s and t in T with s < t and for a Borel set A, one sets

P(S,{B,t,A) = P{X{ c A | X_., = ;r),

then the following are equivalent:
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(a) The Chapman-Kolmogorov equations

P(s,x,t,A):./P(u,ﬁ‘t,A)P{s,:c,u,d{) (u€ls,{NT)
R

hold for almost all z € R;
(b) Cst = Gsu * Cut-

The crucial step in the proof of Theorem 2 is the following equality
P(s,t,z,]—00,a]) = D1Cy (Fs(z), Ft(a)) a.e..

Of course {X,;} may satisfy the Chapman-Kolmogorov equations with-
out being a Markov process. A necessary and sufficient condition in terms
of the copulas Cy is known. In order to state it, it is necessary to have
recourse to the notion of n-dimensional copula?!®, or, briefly n-copula,
i.e. the function C : [0,1]" — [0, 1] that expresses an n—dimensional distri-

bution function H in terms of its one-dimensional marginals Fy, Fi,... Fy,
H(zy,T2,...,25) = C (Fi(z1), Fa(z2), ..., Fa(za)) .

Let A be an m-copula and let B be an n-copula; then define A x B :
[0,1]™*""1 = [0,1] via

(A*B)($1|I2: . '12:773.-]-7!—1)
Tm
= f DmA(xh' " 'lxm—lit) DIB(t!mm-Flr' e }mm-f-ﬂ—?)dt'
1]

Here again D, denotes the partial derivative with respect to the m-th
variable.

Then A B is an (m+n — 1)-copula and the operation * is associative,
viz. (A% B)* C = A (B xC). The proclaimed necessary and sufficient

condition is contained in the following theorem®.

Theorem 3: For a real-valued stochastic process {X; : t € T'}, the follow-
ing conditions are equivalent

(a) {X::t €T} is a Markov process;
(b) for every natural number n and for every choice of n elements ty, ts,
oy tpind, witht; <tg <--. < t,, one has

al
Cirtarntn = Clita ¥ Cyty % % Cp,_y 2,5

where Cy, t,....+, is the copula of the random vector (Xy,, X4,, ..., X4,)
and Cy,_, 4, is the copula of the vector (X _,,X, ), with k =
I LR
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5. Copula, Markov Operators and Conditional
Expectations

While proving Theorem 2, Darsow, Nguyen and Olsen® proved that if the
random variables X and Y have copula C, then one has almost surely

E (1{x<a) | Y) (w) = D2C (Fx(z), Fy (Y (w))) ,
E(lgy<yy | 2) () = D1C (Fx (X (w)), Fr () -

These latter relationships point at a connection between Conditional Ex-
pectations(=CE’s) and copulas. This connection is best established through
Markov operators. Given a probability space (2, F, P), a Markov operator
is a linear operator T : L — L*° such that

(a) T is positive, f >0 = T'f >0,
(b) T1=1;
(c) for every function f in L, one has E(T f) = E(f).

Above, L* may be replaced by L'. Notice that if G is a sub-o—field of
F, then the CE Eg := E(- | G) is a Markov operator. It is then natural
to ask which Markov operators are also CE’s. The answer to this question
is obtained by exploiting the expectation invariance of a Markov operator,
the property expressed by (c) above and the characterization of CE’s given
by Pfanzagl'” (but see also the previous works of Bahadur® and Sidak?*);
it is then possible to identify those Markov operators that are also CE’s,
when the probability space under consideration is ([0, 1], B, A).

Theorem 4: A Markov operator T' : L*([0,1]) — L°([0,1]) is the
restriction to L*°([0,1]) of a CE if, and only if, it is idempotent, viz.
T? ;= ToT = T. When this latter condition is satisfied, then T = Eg,
where G := {A€B:T14=14}.

On the other hand, an explicit one-to—-one correspondence between
Markov operators and copulas can be established. It was shown'® that,
for every copula C, the operator T defined by

1
(Tef) @) =g [ DaClat) 1) ©)

is a Markov operator on L ([0,1]) and that, conversely, if 7" is a Markov
operator on L* ([0, 1]), then the function Cr : [0,1] x [0, 1] — [0, 1] defined
by

Cp(z,y) = -/n:E (T I[O,y]) (3) ds ) (6)
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is a copula. Thus, to a copula C' there corresponds a unique Markov operator
Te and, conversely, to a Markov operator T' there corresponds a unique
copula Cr. Moreover, the composition of the two Markov operators 7'y
and T'p that correspond to the two copulas A and B is connected to the *
operation by means of the relationship

TA*B S fi“A o TB-

Therefore the Markov operator T corresponding to a copula C is idem-
potent, and, hence a CE, if, and only if, the copula C is itself idempotent
with respect to the operation # introduced above, namely if, and only if,
C = C* C. Thus, there exists a one-to—one correspondence between idem-
potent copulas and CE’s in the probability space ([0, 1], B, A); for this, see
the author’s paper?®.

The correspondence between Markov operators and copulas allows to es-
tablish a correspondence between copulas and measure preserving transfor-
mations on the unit interval'®®. We recall that a function f : [0,1] — [0,1]
is said to be a measure preserving transformation if, for every Borel subset
B of B, f~!(B) is measurable, namely it belongs to B, and one has

A(f7H(B)) = MB).

If f and g are measure preserving transformations, the function Cy, :
[0,1]> — [0,1] defined by

Crg(s,t) := A (f1([0,s]) ng~*([0,2])),

is a copula. Conversely, for every copula C there exists a pair of measure
preserving transformations f and g, such that

C: CJr:g'

6. Generalizations of Copulas

In spite of their many uses in probability and statistics, uses which we have
tried to sketch in the previous sections, it has been necessary to generalize
the notion of copula in order to deal with certain problems. The first such
generalization was introduced by Alsina, Nelsen and Schweizer! in order
to characterize a class of operations on distribution functions that derive
from corresponding operations on random variables defined on the same
probability space. The concept of track is needed: a track is a subset B of
the unit square [0,1] x [0,1] that can be written in the form

B ={(F(t),G(t)) : t € [0,1]},
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for some continuous distribution functions F' and G such that F(0) =
G(0) = 0 and F(1) = G(1) = 1. Then, a quasi—copula is a function
Q :[0,1] x [0,1] — [0,1] such that, for every track B, there exists a copula
Cp that coincides with @ on the points of B: for all (s,t) € B

Q(s,t) = Cp(s,t).

Later it was proved!! that @ is a quasi—copula if, and only if, it meets the
following requirements

(a) Vvt e [0,1] Q0,t) = Q(t,0) =0, and Q(1,t)=Q(t,1)=t;
(b) the function (s,t) — Q(s,t) is non-decreasing in each of its arguments;
(c) @ satisfies Lipschitz’s condition, viz., for all s, ', t and ' in [0, 1],

1Q(s',#) = Q(s, D)l < Is' — sl + ' — 1.

The properties of quasi-copulas have been extensively studied in Ubeda
Flores’s dissertation®?.

Bassan and Spizzichino? have introduced another generalization of the
concept of copula in their investigation of bivariate aging. Let X and Y be
two positive and exchangeable random variables and let F' be their joint
survival function

F(s,t):=P(X >sY>t) st>0.

Finally, let G be the univariate marginal survival function of F, G(z) :=
F(x,0) = F(0,z). Then they introduce the bivariate aging function B :
[0,1}* = [0,1] defined by

B(s,t) := exp {—6“” (F(~Ins,—In t))}.

This is an increasing function of each of its arguments, but is not necessarily
a quasi-copula (nor, a fortiori, a copula).

A generalization in a different, more abstract, direction, has been intro-
duced by Scarsini'?; here, we shall briefly touch only on the case n = 2.
Let (£24,B1,P) and (€9, By, P») be probability spaces, where €, and £,
are Polish (i.e. complete metrizable) spaces, each of them endowed with its
Borel o-field B; (i = 1,2). Let A; be an increasing class of sets belonging
to B; (i = 1,2) (if the sets A and B are in A;, then either A C Bor B C A,
or A = B) and let (; x Qz,B; ® By, 1) be a probability space such that,
for all By € By and By € Bs, one has

j.!,(Bl X Qg) = P] (B]), and ,U,(Ql x Bz) = PQ(BQ)
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Then, if one sets

A= {A1 X A2 A e A1, A € ./4.2}1

there exists a copula C;f such that, for every choice of A; x A, in A, one

has
p (A1 x Az) = CH (Pi(41), Py(Ay)) -
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